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Abstract

We propose a new method for the problem of partial identification, the estimation1

of bounds on the treatment effects from observational data. Although studied2

using discrete treatment variables or in specific causal graphs (e.g., instrumental3

variables), partial identification has been recently explored using tools from deep4

generative modeling. We propose a new method for partial identification of av-5

erage treatment effects (ATEs) in general causal graphs using implicit generative6

models comprising continuous and discrete random variables. We leverage average7

treatment derivatives, the partial derivatives of response functions, to prove that8

our algorithm converges to tight bounds on ATE. Our empirical results show that9

using average treatment derivatives leads to tighter and more stable bounds than10

methods that directly optimize the ATE when treatments are continuous. In the11

case of discrete treatments, our derived bounds match those from bespoke solutions12

for partial identification.13

1 Introduction14

Estimating average treatment effects (ATEs) is a common task that arises in fields involving decision-15

making, such as healthcare and economics. In the presence of the gold-standard randomized controlled16

trial (RCT) data, one can compare the outcome variable between treated and control groups to make17

decisions. But RCTs can be costly to set up and run and are, in many circumstances, infeasible.18

Consequently, communities are using observational data to assist in decision-making.19

Identification of treatment effects from observational data is tied to the structure of the causal graph.20

For example, the treatment T and outcome Y in Figure 1b are confounded by an unobserved random21

variable, making it impossible to find the causal effect of T on Y only from observational data. On22

the other hand, Figure 1c is identifiable, and one can adjust for confounders using the Back-door23

formula [Pearl, 2009]. Even in identifiable settings, non-parametric estimations such as Back-door24

adjustment formula can point-identify the ATE only with additional assumptions such as positivity,25

i.e., P (T = t|X) > 0 for all values of covariate X . Observational data is finite, high-dimensional,26

and consequently can suffer from severe violations of such assumptions [D’Amour et al., 2021].27

In lieu of the challenges of point-identification, there has been a recognition that decisions can be28

justified using reliable bounds on the ATE rather than its exact value. For an oncologist treating29

a cancer patient, knowing that a drug has a significant, positive reduction in the patient’s risk of30

progression may suffice as a rationale to prescribe that drug. This problem is known as partial31

identification [Manski, 2003]. Most existing methods for bounding the ATEs are only applicable32

in discrete/binary treatment variables [Makar et al., 2020, Zhang et al., 2021, Duarte et al., 2021,33

Guo et al., 2022]. There has been recent interest in continuous treatment settings. However, such34

methods are applicable for special causal graphs such as the instrumental variables (IV) setting35

[Gunsilius, 2020, Kilbertus et al., 2020] or make parametric assumptions on the family of treatment-36
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(e) Partial identification of ATE in a finite linear Back-door dataset.
Figure 1: The causal graphs for non-identifiable (a) Leaky mediation and (b) Instrumental Variable (IV), and
identifiable (c) Back-door and (d) Front-door settings. T , X , and Y represent treatment, covariates, and target
variables. The dashed double-arrows represent latent factors. (e) The response functions corresponding to partial
identification of E[YT=2]� E[YT=�2] in a Back-door linear SCM after training a generative model to match
the distribution. (left) shows the results for directly optimizing the ATE, and (right) is our solution by optimizing
the ATD, which leads to tighter bounds. Each point (t, y) represents the expected outcome y after intervention
T = t in the learned generative model.

response functions [Padh et al., 2022]. An exception is the work by Hu et al. [2021] which provides37

a non-parametric approach for partial identification using generative adversarial networks (GANs).38

However, they only provide convergence guarantees for the special case of IV causal graphs.39

Using the framework of structural causal models (SCMs) and causal graphs, one can see partial40

identification as a constrained optimization problem, where the objective, i.e., maximizing/minimizing41

the ATE, can be written as a post-intervention function of exogenous noise (a.k.a response function)42

and the constraint is to match the generated samples with the observational distribution. This naturally43

leads to using generative neural networks such as neural causal models (NCMs) [Xia et al., 2021].44

We find that directly solving the ATE optimization using flexible generative models such as GANs45

can lead to non-informative and degenerate solutions. The flexibility afforded by generative models46

such as GANs allows them to deviate significantly from the true response curve in the neighborhood47

of intervention points to maximize/minimize the ATE while continuing to generate samples akin to48

the data distribution. Figure 1e (bottom left) showcases a typical solution to the ATE optimization.49

Our insight is that the ATE between any two points can be approximated as an integral over the50

derivatives of the response function w.r.t. the treatment variable. Rather than directly optimizing51

the ATE, we optimize the partial derivatives of the response function, a quantity that we refer to52

as the average treatment derivative (ATD), which is also known as the average partial effect in the53

literature [Powell et al., 1989, Wooldridge, 2005, Rothenhäusler and Yu, 2019]. By optimizing the54

ATD, the model is required to maximize/minimize the partial derivatives for all points within the55

treatment support, avoiding extreme local solutions and resulting in tighter bounds as shown in56

Figure 1e (bottom right). Our contributions are as follows:57

• We formally define the partial identification of average treatment derivatives as a distributionally-58

constrained optimization problem, where we choose Wasserstein distance as our constraint metric.59

• For the class of linear SCMs, we prove that the solution to our optimization problem converges to60

optimal bounds on the true value of ATD in infinite data for general causal graphs.61

• We show that the solution to partial identification of ATDs can be used to find informative bounds62

on the value of ATE under uniform treatment assignment within the interval. We introduce63

a practical algorithm to solve the distributionally-constrained optimization problem using the64

Lagrange multiplier formulation with alternating optimization. We empirically show that our65

algorithm results in tighter and more stable bounds than methods that directly optimize the ATE.66
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2 Problem Setup & Background67

We introduce the definitions and assumptions we will use throughout the paper. Consider the observed68

data as (possibly continuous) random variables V = {X1, · · · , Xm, T, Y } 2 Rd, where T , Y , and69

{X1, · · · , Xm} denote the treatment variable, target variable, and covariates, respectively.70

Data generating model. Our approach will be based on the framework of Structural Causal Models71

(SCMs). An SCM is a tuple M = (V,U,F , PU), where each observed variable Vi 2 V is a72

deterministic function of a subset of variables pa(Vi) ✓ V and latent variables UVi ✓ U, i.e.,73

Vi = fVi(pa(Vi),UVi) where fVi 2 F , Vi 62 pa(Vi) (1)

The only source of randomness are latent variables U with probability space (⌦,⌃, PU). This74

induces a probability law over the observed variables PM. We may omit the subscript M and denote75

the observational probability distribution by P throughout the text. Given M, one can construct a76

graph with nodes V[U and directed edges from nodes in pa(Vi)[UVi to Vi. We call this graph the77

causal graph corresponding to SCM M and denote it by GM or simply G. Note that G is acyclic and78

we assume it is known. For random variable V in the SCM M, let VM(u) be its deterministic value79

after fixing a realization u of latent variables U. The causal effect of treatment T on target Y is:80

Definition 1 (Causal Effect). Let YM(T=t)(u) be the value of Y by fixing U = u and changing the81

function fT to a constant function fT = t in M. Then, we call the random variable YM(T=t) the82

causal effect of treatment T = t on target Y . We may simplify the notation and write it as Yt if the83

SCM M and treatment variable T are known from context. Note that YT (u)(u) = Y (u).84

When T is continuous, then we can view {Yt : t 2 supp(T )} as a stochastic function defined on85

(⌦,⌃, PU). This is referred to as the response function, partial dependence plot, and dose-response86

curve in the literature [Zhao and Hastie, 2021, Ritz et al., 2015, Chernozhukov et al., 2018].87

Average treatment effect, average treatment derivative, and partial identification. Our goal is to88

estimate bounds on the effectiveness of a treatment regime on a population from the observational89

distribution P and the causal graph G. In the continuous treatment case, where there is no "on"/"off"90

notion of treatment, we can compare the average causal effect of an arbitrary treatment (dosage)91

to the average causal effect at a fixed point T = t0. For example, to indicate the effect relative92

to not prescribing any treatment, we can choose t0 = 0. This quantity is known as the average93

treatment effect, average level effect, or average dose effect in the literature on continuous treatment94

setting [Hirano and Imbens, 2004, Kennedy et al., 2017, Callaway et al., 2021].95

Definition 2 (Average Treatment Effect). For SCM M, the average treatment effect (ATE) at T = d96

w.r.t. a fixed point T = t0 is defined as97

ATEM(d) := Eu⇠PU [YM(T=d)(u)� YM(T=t0)(u)] (2)

Note that estimating the ATE and finding bounds on it only depends on the value of the average98

response function in T = d and T = t0. As pointed in Gunsilius [2020], this quantity can take99

arbitrary values if we do not make any assumptions on the set of response functions. Here, we assume100

the partial derivative of the response function w.r.t. the treatment, i.e., @Yt/@t exists and is a bounded101

continuous function. We then define the average treatment derivative as the following:102

Definition 3 (Average Treatment Derivative). For the treatment regime fT in SCM M, we define the103

average treatment derivative (ATD) as104

ATDM = Eu⇠PU


@YM(T=t)(u)

@t

���
t=T (u)

�
, (3)

Estimating the ATD can be seen as a proxy for the effectiveness of the prescribed treatment,105

where we consider the population-level average effect of an infinitesimal increase in the treat-106

ment/dosage [Rothenhäusler and Yu, 2019]. In this work, however, we leverage the regularity of this107

quantity to achieve smoother solutions to the ATE estimation. We will expand on this in section 4.108

Note that we cannot readily use eq. 2 (or eq. 3) to estimate the ATE (or ATD), as we only have access109

to the observational distribution P and the causal graph G and not the latent distribution PU. In fact,110

ATEs are generally non-identifiable, i.e., there exist multiple SCMs with the same causal graph G and111

generated distribution P that result in different values of ATE. For some graphs, however, one can112
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use non-parametric identification algorithms like do-calculus to identify the causal effect from the113

observational distribution [Pearl, 2009]. In practice, even for identifiable causal graphs, we cannot114

pinpoint the true ATE due to the uncertainty caused by sampling variation and finite sample errors.115

Instead, we are interested in finding a tight set of possible solutions that will contain the true value116

of ATE (or ATD) with high probability. This is known as the partial identification problem in the117

literature [Manski, 2003].1 More formally, the partial identification of ATDs/ATEs is defined as:118

Definition 4 (Partial Identification of ATD/ATE). Partial identification of ATD is the solution to the119

following optimization problem:120

( min
M02M

ATDM0 , max
M02M

ATDM0) s.t. PM0 = P & GM0 = G (4)

where M is the set of all SCMs on random variables V. We denote the solution to the above problem121

as (ATD,ATD). Similarly, we can define the partial identification of ATEs by replacing ATDM0 with122

ATEM0(d) in eq. 4. We refer to the solution to the latter problem as (ATE(d),ATE(d)).123

Implicit generative models. To solve the partial identification problem, we use the expressive power124

of generative models to satisfy the distribution constraint in eq. 4. Choosing distance measures such125

as Jensen-Shannon divergence or Wasserstein metric results in models such as GANs or Wasserstein126

GANs (WGANs) [Goodfellow et al., 2014, Arjovsky et al., 2017]. The typical way to implement127

these models is to solve a minimax game between the generator and a discriminator. However,128

adding the ATD minimization/maximization term to the minimax loss function will result in unstable129

training. Instead, in our practical algorithm, we will use Sinkhorn Generative Networks (SGNs) that130

use Sinkhorn divergence S✏, a differentiable ✏-approximation of Wasserstein metric, as the distance131

measure between generated and true samples [Cuturi, 2013, Genevay et al., 2018, Feydy et al., 2019].132

Due to the differentiability of Sinkhorn divergence, we will only need to train a generator network133

enabling us to sidestep much of the unstable minimax training in (W)GANs.134

3 Related Work135

This work builds upon partial identification and generative causal models.136

Partial identification. Finding informative bounds on treatment effects has been well-studied in137

the existing literature ([Robins, 1989, Manski, 1990, Evans, 2012, Ramsahai, 2012, Richardson138

et al., 2014, Miles et al., 2015, Finkelstein et al., 2021, Zhang and Bareinboim, 2021a,b]). Balke139

and Pearl [1997] find the tightest possible bound for the discrete instrumental variable setting by140

converting it to a linear programming problem. For the backdoor setting and binary treatments, Makar141

et al. [2020] provide probabilistic upper/lower bounds on potential outcomes in the finite sample142

regime. Recently, Zhang et al. [2021] and Duarte et al. [2021] independently describe a polynomial143

programming approach to solve the partial identification for general causal graphs. They both use144

the notion of canonical SCMs to map the latent variables to the space of functions from treatment145

T to outcome Y . Though they show their polynomial programming formulation finds the optimal146

bound, their approach is only applicable to discrete random variables with small support. In fact, the147

time complexity of their algorithm grows exponentially with the size of the support set of variables,148

making their algorithm intractable for continuous settings.149

Gunsilius [2019] extends the commonly-used linear programming approach to partial identification150

of IV graphs with continuous treatments. They use a stochastic process representation of the variables151

and solve the linear programming via sampling. However, their method suffers from stability issues,152

as discussed in Kilbertus et al. [2020] and is only applicable for the IV setting. Kilbertus et al.153

[2020], Padh et al. [2022] parameterize the space of response functions by assuming them as linear154

combinations of a set of fixed basis functions. Then, they match the first two moments of observed155

distribution while minimizing/maximizing the ATE. However, they do not provide any theoretical156

guarantees on the tightness of their derived bounds.157

Most similar to our work is Hu et al. [2021] who use generative adversarial networks (GANs) to match158

the observed distribution and search for response functions with maximum/minimum ATEs. They159

provide convergence guarantees for the instrumental variable causal graph with linear models. Their160

1In the literature, partial identification is not concerned with sampling uncertainty and is defined population-
wise for non-identifiable causal effects. However, in this paper, we abuse the terminology and use partial
identification for non-identifiable quantities and identifiable effects with finite samples.
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approach is also based on the minimax game between generator and discriminator, which can result161

in unstable training. Our work differs in a few important ways. We focus on partial identification162

of average derivatives and use that to find bounds over the ATE. Using this approach, we show163

that our derived bounds converge to the optimal bounds for linear SCM with general causal graphs,164

including both identifiable and non-identifiable settings. We use Sinkhorn divergence, a differentiable165

approximation of Wasserstein distance, to train our implicit generative models. Empirically, we find166

that this avoids the unstable training of GANs. Guo et al. [2022] studied the partial identification167

of ATE with noisy covariates. Their work is similar to our approach in that we both use a similar168

robust optimization formulation. However, they focus on identifiable causal graphs, where one can169

use adjustment formulas such as the Back-door formula and make parametric assumptions on the170

joint distribution of observed variables.171

Generative causal models. [Goudet et al., 2017, Yoon et al., 2018, Kocaoglu et al., 2018, Sauer172

and Geiger, 2021] use generative models to capture a causal perspective on evaluating the effect173

of interventions on high-dimensional data such as images. They do not consider the problem of174

bounding treatment effects. Xia et al. [2021] introduced Neural Causal Models (NCMs) that leverages175

the universal approximability of neural networks to learn the SCM. Although it is not generally176

possible to learn the true SCM by training on the observational data, they prove that NCMs can177

be used to test the identifiability of causal effects and propose an algorithm to estimate identifiable178

causal effects. Their work’s theory and empirical instantiation are in the context of discrete random179

variable datasets. Our work builds upon NCMs for partial identification with both continuous and180

discrete random variables.181

4 Partial Identification using Implicit Generative Models182

We explain our method to solve the partial identification problem in Def. 4 using implicit generative183

models. In subsection 4.1, we describe partial identification of ATDs as a constrained optimization184

problem using G-constraint generative models [Xia et al., 2021]. Then, in subsection 4.2, we show185

that the solution to this constrained optimization problem converges to the optimal bounds on the186

ATD in infinite data samples. We prove our results for linear SCMs with general causal graphs,187

i.e., both identifiable and non-identifiable settings. Next, we propose our approach to extend the188

partial identification of ATDs to ATEs. Finally, we describe a practical algorithm to solve our189

distributionally-constrained optimization problem in subsection 4.3.190

4.1 G-constraint generative models191

To solve the partial identification problem, we need to search over the set of all possible SCMs M.192

This is generally not feasible, as there is no constraint on the distribution of the latent variables PU,193

as well as the function family F . Instead, we parameterize the space of all SCMs that are consistent194

with causal graph G using neural networks. More specifically, we use G-constraint generative models:195

Definition 5 (G-constraint Generative Models (Def. 7 in Xia et al. [2021])). For a given causal196

graph G, a G-constraint generative model is a tuple M✓
G = (V, Û,F✓, P̂Û), where each Vi 2 V is197

generated from198

Vi = f✓
Vi
(pa(Vi), ÛC) for f✓

Vi
2 F✓, (5)

where pa(Vi) is the observed parents of node Vi in G and ÛC 2 U is the latent noise corresponding199

to maximal C2-Component C ✓ V containing node Vi, i.e., each pair of variables in C have common200

latent parent nodes. In addition, P̂Û ⇠ Unif(0, 1) for each Û 2 Û.201

G-constraint generative models make the search over the set M feasible by limiting it to generative202

models with uniformly distributed latent variables that are consistent with causal graph G. In203

fact, in their Theorem 3, Xia et al. [2021] show that for any discrete SCM M⇤ with causal graph204

G, there exists a G-constrained generative model M✓
G that generates the same causal effect, i.e.,205

YM⇤(T=t) = YM✓
G(T=t) a.s. Their proof technique, however, only works for SCMs with discrete206

variables. Here, we do not prove the expressiveness of G-constrained generative models for continuous207

SCMs. Instead, for simplicity and completeness of our theoretical results in subsection 4.2, we assume208

that the true SCM is a G-constrained generative model itself. In our experiments, we empirically209

show that our results hold even for SCMs with different latent distributions, such as Gaussian noise.210
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Assumption 1. The true SCM M is a G-constrained generative model. In other words, there exist ✓211

such that M = M✓
G .212

Under Assumption 1, we reformulate the problem in eq. 4 using generative models, i.e.,213

(min
✓

ATDM✓
G
, max

✓
ATDM✓

G
) s.t. PM✓

G
= P (6)

In practice, we never have access to true distribution P as we only observe a finite number of samples214

corresponding to the empirical distribution Pn = 1
n

Pn
i=1 �v(i) for a given dataset {v(1), · · · ,v(n)}.215

Also, the observed variables may be biased due to noisy measurements. Therefore, we reformulate216

the problem in eq. 6 as a constrained optimization problem. We choose the 1-Wasserstein metric as217

our distance measure, which naturally results in generative models such as WGANs. We will state218

our theory in subsection 4.2 based on this metric. However, in subsection 4.3, we will propose a219

practical algorithm that uses Sinkhorn divergence, a differentiable approximation of 1-Wasserstein220

distance, for more stable results. Our constrained optimization problem is as follows:221
✓
min

✓
ATDM✓

G
,max

✓
ATDM✓

G

◆
s.t. W1

⇣
PM✓

G
, Pn

⌘
 ↵n (7)

where ↵n is a hyper-parameter that specifies the level of tightness of the bounds. We denote the222

solution to eq. 7 as ( ˆATD, ˆATD). In the case of noisy measurements, we need domain knowledge223

of how noisy the data is to determine the value of ↵n. Otherwise, we can use the finite-sample224

convergence rate of empirical Wasserstein distance to choose an appropriate value of ↵n [Weed and225

Bach, 2019]. As our theoretical results are concerned with the infinite-sample case, we will assume226

that there exist values of ↵n such that the true distribution lies within the Wasserstein ball.227

Assumption 2. For each n 2 N, there exist ↵n > 0 such that W1(P, Pn)  ↵n.228

4.2 Theoretical guarantees and extension to ATEs229

Assumptions 1 and 2 ensure that the bound derived by eq. 7 contains the true value of ATD. However,230

we do not know how informative/tight the derived bounds are. In fact, one can always return231

(�1,+1) as one solution to partial identification. This part gives theoretical guarantees that our232

algorithm can result in tight bounds over ATD. In particular, we focus on linear SCMs and show that,233

under the infinite number of samples, our algorithm converges to the optimal bound (ATD,ATD) for234

both identifiable and non-identifiable causal graphs. See Appendix A for the proof.235

Definition 6 (Linear SCMs). SCM M = (V,U,F , PU) is linear, if236

Vi = a>
Vi
pa(Vi) + b>

Vi
UVi for vectors aVi ,bVi 2 F (8)

Theorem 1 (Tight Bounds). Assume the dataset {v(1), · · · ,v(n)} is generated from a linear SCM.237

Then, under assumptions 1, and 2, the solution to the constrained optimization problem in eq. 7238

converges to the optimal bound over the ATD in infinite samples, i.e., ˆATD ! ATD and ˆATD ! ATD.239

240

Up until now, we have only focused on partial identification of ATDs. Here, we discuss how to extend241

our results to find bounds on ATEs. A naive solution is to replace ATD with ATE in eq. 7 and directly242

optimize it. However, as demonstrated in the experiments, this approach can result in non-informative243

bounds. In fact, Gunsilius [2020] gives a counterexample of a generative function that can match the244

observational distribution in the IV setting and produce arbitrary values of ATE.245

Instead, we claim that we can use the same generative model trained for partial identification of ATD246

to bound the value of ATE. In particular, we define a new objective function by uniform intervention247

on the treatment, which we call UniformATD, and show that the solution to partial identification of248

UniformATD matches the solution to partial identification of ATEs.249

Definition 7 (UniformATD). For an SCM M, we define the uniform average treatment derivative250

(UniformATD) at interval [t0, d] as251

UATDM[t0, d] := Eu⇠PU


Et⇠Unif[t0,d]


@Yt(u)

@t

��
(9)

Now, we state our result on using average derivatives to solve partial identification of ATEs:252
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Corollary 1. Let ✓⇤ be the solution to the partial identification of UniformATD at interval [t0, d].253

Then, ✓⇤ is also a solution to the partial identification of ATE(d). If the true SCM M is linear, then254

the bound is tight, i.e., ˆATE(d) ! ATE(d) and ˆATE(d) ! ATE(d) as n ! 1.255

The proof is given in Appendix B.256

Remark. Note that the UniformATD objective equals the ATE up to a scale factor. Therefore, one can257

argue that optimizing both will essentially result in the same solution. However, the main benefit of258

UniformATD is that we can approximate it by distributions with continuous differentiable log-density259

functions such as a uniform distribution with Gaussian tails. This will replace the pathological quantity260

ATE with a pathwise differentiable approximation resulting in smoother solutions. See Appendix C.261

4.3 Our algorithm262

We describe our algorithm to solve the optimization problem in eq. 7. We will focus on finding ˆATD,263

a similar approach can be taken for ˆATD. A general strategy is to convert the constrained problem to264

its unconstrained version using the method of Lagrange multiplier:265

min
✓

max
��0

ATDM✓
G
+ �(W1(PM✓

G
, Pn)� ↵n) (10)

As the Wasserstein distance is not differentiable, we cannot directly use gradient descent to solve266

eq. 10. A common approach is to use the dual formulation of Wasserstein distance W1(PM✓
G
, Pn) =267

max||q�||L1 EPn [q�(v)]� EPM✓
G
[q�(v)] and solve eq. 10 using WGANs, a similar solution used268

in Hu et al. [2021]. However, this min-max-max formulation can result in unstable bounds as we269

show in our experiments. Instead, we use Sinkhorn divergence, a differentiable approximation to270

Wasserstein distance, as the measure of distance between distributions and solve the following:271

min
✓

max
��0

ATDM✓
G
+ �(S✏(PM✓

G
, Pn)� ↵n) (11)

To solve eq. 11, we need to evaluate ATDM✓
G

and calculate its gradient w.r.t. ✓. As we are using272

G-constrained generative models, we can calculate the value of YM✓
G(T=t)(u) by hard intervention273

T = t, i.e., fixing the output of function f✓
T as t and computing Y through a topological order of274

calculations. Then, we estimate ATDM✓
G

as follows:275

ATDM✓
G
⇡ 1

n

nX

i=1

1

✏

h
YM✓

G(T=T (i)+✏)(u
(i))� YM✓

G(T=T (i))(u
(i))

i
(12)

where {T (i)}n
i=1 are samples from the treatment variable, and {u(i)}n

i=1 are the latent variables276

generated from a uniform distribution. To choose an appropriate value of ↵n, we first train our277

generator without the ATD term until the Sinkhorn loss converges to some value and use that as our278

choice of ↵n. We then continue our training by adding the ATD term.279

We note that using algorithms such as projected gradient descent to solve the constrained optimization280

problem requires us to project the weights of our network into the Wasserstein (Sinkhorn) ball in281

each step. This can be computationally infeasible, and current methods are mainly focused on special282

loss functions [Mohajerin Esfahani and Kuhn, 2018, Li et al., 2019, Wong et al., 2019]. Instead, we283

consider an alternating optimization procedure, in which we alternate between updating the gradients284

for the ATD and the Sinkhorn loss. The full details of our algorithm, its extension to ATEs, and the285

alternating optimization are described in Appendix D.286

5 Experiments287

We run our partial identification algorithms on a variety of simulated settings. We mainly focus on the288

synthetic data generating processes as the ground truth must be known to evaluate our derived bounds289

properly. Our primary goal is to show that using average treatment derivatives instead of directly290

optimizing the average treatment effect will result in tighter and more stable bounds. First, we run291

our algorithm to estimate bounds on the value of ATDs for both identifiable and non-identifiable292
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Figure 2: Our derived bounds on ATD for (a) linear Back-door, (b) Front-door, (c) linear IV and (d) leaky
mediation settings. As the number of samples increases, our algorithm pin-points the ATD in identifiable settings
and leads to tight bounds on it in non-identifiable cases.
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Figure 3: Our results for partial identification of E[Yt]� E[Yt0 ] for 10 different values of treatment t in (top
left) nonlinear Back-door, (top right) linear IV, (bottom left) nonlinear IV, and (bottom right) leaky mediation
settings. t0 is chosen as the maximum treatment value in each data. Our derived bounds are tighter and more
stable than the GAN baseline, which directly optimizes the ATE.

causal graphs. We show that, as the number of samples increases, our algorithm converges to tight293

bounds over the true value of ATD (Figure 2). We then focus on partial identification of ATEs and294

demonstrate that using partial derivatives of the response function leads to more informative bounds295

than methods that directly optimize the ATE (Figure 3). Finally, as a sanity check, we run our method296

on two binary datasets, where the optimal bounds are known and show that our approach can reach297

the optimal solution. Therefore it is applicable for both discrete and continuous datasets.298

5.1 Datasets and Baseline299

Continuous Setting. We generate a linear SCM with three-dimensional covariates from a multivariate300

Gaussian distribution for the Back-door causal graph (Figure 1c). We also simulate a quadratic SCM301

with nonlinear interaction between the covariates and treatment. For the Front-door setting (Figure 1d),302

we similarly generate an SCM where the target variable is a quadratic function of the mediator. In303

addition, we consider two different SCMs for the IV setting (Figure 1b) based on the strength of the304

instrument and the confounding. In particular, we generate a linear SCM with a weak instrument305

(small correlation between the treatment and the instrument) and strong confounding (high correlation306

between the hidden confounders and the target variable). We also consider a nonlinear dataset with a307

strong instrument and weak confounding. Finally, for the leaky mediation causal graph (Figure 1a),308

we generate a two-dimensional linear dataset.309

Discrete Setting. We consider the binary IV dataset described in Duarte et al. [2021], where the310

true value of ATE is not identifiable, but the optimal bound is known. We also use the Front-door311

binary dataset in Zhang et al. [2021] where the causal effect is identifiable. The full details of our312

data generating processes for both continuous and discrete settings can be found in Appendix F.313

GAN Baseline. Our baseline is the algorithm in Hu et al. [2021] that directly optimizes the value of314

ATE using GANs. We use their default hyper-parameters with a tolerance of 0.0001. Similar to their315

experimental setup, we consider 50 intermediate solutions where the distance is within the tolerance316

and compute the bounds using the mean and one-sided confidence intervals. Our implementation317

details, as well as hyper-parameters can be found in Appendix G.318
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Table 1: The bounds derived by our method over the ATE. The results include the optimal bound.

Causal Graph Ours Optimal Bound True Value

Front-door (Discrete) (0.4374, 0.5322) – 0.5085
IV (Discrete) (-0.5629, -0.0821) (-0.55, -0.15) -0.25

5.2 Results319

Bounding average treatment derivatives. We generate data with sample sizes N =320

{500, 1000, 2000, 5000} from the nonlinear Front-door and linear Back-door SCMs (identifiable),321

as well as linear IV with strong confounding and leaky mediation settings (non-identifiable). We322

run our algorithm with ten different random seeds for each setting/sample size. Then, we choose323

the five runs with the lowest tolerance parameter ↵n and choose the upper (lower) bound as the324

maximum (minimum) value of the ATD within these five runs. Figure 2 shows our derived bounds.325

As expected, the algorithm is able to point-identify the value of ATD for identifiable scenarios as the326

number of samples increases (Figures 2 (a) and (b)). In non-identifiable cases, our algorithm leads to327

tight bounds containing the true value of ATD by increasing the number of samples as depicted in328

Figures 2 (c) and (d). This is in line with our results in Theorem 1.329

Bounding average treatment effects. Here, we aim to demonstrate the effectiveness of using partial330

derivatives for bounding the ATE compared to the direct optimization approach. We consider four331

different settings and run our algorithm for 10 different values of treatment {ti}10
i=1 in each setting.332

We compute the value of ATE w.r.t. a fixed point t0, chosen as the maximum treatment value in the333

samples. For each value of T , we generate N = 5000 samples and run each experiment five times.334

Then, we select the maximum (minimum) value of ATE within the five runs as the upper (lower)335

bound. We follow the same procedure for the GAN baseline.336

To find the bounds on ATE using our approach, we uniformly intervene on the interval between t0 and337

ti and maximize/minimize the partial derivatives. Figure 3 shows the effectiveness of this approach338

in comparison to the GAN baseline. Our algorithm produces stable and tight bounds containing the339

true value of ATE, while the GAN baseline, which relies on the direct optimization of ATEs, results340

in unstable loose bounds that may not include the true value of the treatment effect.341

Binary treatments. To showcase the generality of our framework, we study two datasets with binary342

treatments. Here, the partial derivatives do not exist, so we directly optimize the ATE. Note that,343

in the discrete setting, the network can’t generate arbitrary large values in the intervention points344

without violating the distributional constraint. Table 1 shows our derived bounds and compares them345

to the optimal bounds. In the identifiable Front-door causal graph, we find a tight bound over the true346

ATE. In the non-identifiable IV setting, our bound includes the optimal bound with a small gap.347

6 Conclusion, Limitations and Future Work348

Our work introduces a novel method to estimate average treatment effects from observational data.349

Specifically, we propose optimizing the average treatment derivative, which in turn can be used to350

estimate the average treatment effect in treatment response curves. Empirically we find that the use351

of our method recovers known bounds on treatment effects in the discrete case and outperforms other352

methods based on implicit models for partial identification in the continuous case.353

There remain several limitations of this work. Our work builds on the constrained optimization354

problem defined by Xia et al. [2021] instantiated in the context of the ATD. Developing new methods355

for function maximization/minimization approaches under distributional constraints remains an356

important direction for future work. Our work primarily uses carefully designed synthetic datasets to357

evaluate our method under different constraints on the data distribution. A larger-scale evaluation of358

our approach on real-world benchmarks will better help us assess the method’s practicality. Finally,359

the theory of our work is restricted to the linear SCM scenario. We have also made regularity360

assumptions throughout the paper, including Assumption 1, that the true SCM can be modeled using361

implicit generative models with uniform confounding distribution, as well as the approximation of362

UATD with regular treatment distributions. Consequently, practitioners must exercise caution when363

deploying this method when there are nonlinear or irregular structures among the random variables.364
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contributions and scope? [Yes] We have listed the key contributions of our work in the486

introduction. In the experimental section we verify our theoretical contributions and487
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linear settings though we do experiment beyond that in our work. We highlight the489

limitations of our theoretical results and explain the rationale for the approximations490
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limitations of our work in the context of related work, in our exposition of the theoretical493
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times where the method fails to estimate bounds correctly from real-data in non-linear502
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